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FEATURES OF THE AASHTO M-E 
PAVEMENT DESIGN GUIDE 

 Developed under the US NAS (National Academy of Sciences)–
NCHRP (National Cooperative Highway Research program)  
 

 $10,000,000 – 7 Year Effort (Largest Single US Transportation 
Research Project in the History of the US) 
 

 Project Team Leaders 
 AC/Flexible Pavements: Dr. M.W.Witczak 
 Rigid Pavements: Dr.M.Darter 
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Introduction 
 Road and Highways are a very significant cost for agencies to 

construct, maintain and rehabilitate (US Infrastructure worth 
$1,000,000,000,000) 
 

 Pavement design is a very complex process that involves many 
variables as well as the variation of each variable. It is one of the most 
complex Civil Engineering structures to design because we demand a 
FS=1.0 
 

 Mechanistic concepts provide a more rational and realistic 
methodology for pavement design; however, pavement response 
models are mathematically very complex and do not have single closed 
form equation solution. 
 

 The M-E PDG provides a consistent and practical method to design a 
pavement for a desired level of reliability.  
 



 The MEPDG considers a wide range of AC 
Flexible pavement structural sections for : 
 
 New pavement systems 
 Overlay pavement systems 
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 Conventional Flexible Pavements 

 Deep Strength HMA Pavements 

 Full-Depth HMA Pavements 

 "Semi-Rigid" Pavements 
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 HMA Overlay over Existing HMA: 
New            Existing 
 AC       Conventional AC 
 AC       Deep strength HMA pavements 
 AC       Full depth asphalt  
 AC       Semi-rigid pavements 

 HMA over JPCP 
 

 HMA over CRCP 
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 HMA over Fractured JPCP 
 Crack and Seat 
 Rubbilization 

 
 HMA over Fractured CRCP 
 Rubbilization 
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 The primary distresses considered in the MEPDG for flexible 
pavements are: 
 Permanent Deformation (rutting) 

 AC Layers 
 Unbound Base/Subbase/Subgrade Layers 
 Total Rut Depth 

 Fatigue Cracking  
 Top  Down-Longitudinal Cracking 
 Bottom Up- Alligator Cracking 

 Thermal Cracking 
 

 In addition, pavement smoothness (IRI) is predicted based on 
these primary distresses and other factors. 
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Major Asphalt Pavement Distresses 

 Major pavement distresses 
 Permanent deformation 
 Fatigue cracking 
 Transverse (Thermal) cracking 

•How can we simulate these problems in 
the lab? 



11 

Hierarchical Input Process 

 Level   1 (High Reliability) 
Analysis of special problems 
Usually will incorporate Testing 
High Visibility/Risk/Cost Projects  
 

 Level  2 (Medium Reliability) 
Standard Design - Most Cases 
(Rigorous but practical) 
 

 Level 3 (Lower Reliability) 
Lower impact/risk projects 
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HIERARCHIAL APPROACH 
 (AC MODULUS) 
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Hierarchical Approach in NCHRP 1-37A 

 Major Reasons for Presence in M-E PDG 
 

 Allows for a Quantifiable Decision to be Made, 
Based on Benefit / Costs Regarding the Utility 
of Using Detailed Engineering Tests and Data 
Collection / Analysis Techniques Relative to 
Simple, Empirical Correlations or Engineering 
Guesses 
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Hierarchical Approach in MEPDG 

 Major Reasons for Presence in M-E PDG 
 

 Provide Quantifiable Methodology for Agency 
to Prove Certain High Profile, High Importance 
and High Cost Projects Justified 

    
 “Most Advanced State of the Art Technology is 

Mandated  to Save Significant Cost Benefits” 
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Hierarchical Approach in MEPDG 
 

 Major Reasons for Presence in M-E PDG 
 

 Collary is also True 
    

 “Many Projects do not Require Sophisticated , 
Advanced Engineering Approaches”  



Dynamic Modulus Test Protocol 

 Follow Latest AASHTO Protocols 
 Test Factorial 

 5 Temperatures (14, 40, 70, 100, and 130 deg F) 
 6 Frequencies (25, 10, 5, 1, 0.5, 0.1 Hz) 

 Recommend 3 Replicates per Mix 
 Recommend 3 LVDT’s per Specimen 
 Critical Attention to Specimen Flatness/ 

Perpendicularity  (Use Capping if Problem) 

16 
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Dynamic Modulus 
Test 
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Compressive Dynamic Modulus (|E*|) and 
Phase Angle (φ) 
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 Dynamic Modulus Test (Level 1) 
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Construction of E* Master Curve 

AASHTO TP62-03 

5 Temperatures: 14, 40, 70, 100 and 130 oF 

6 Frequencies: 25, 10, 5, 1, 0.5 and 0.1 Hz 
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Manual Shifting 
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Construction of E* Master Curve  
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 Time-Temp. Superposition 
 Use any arbitrary temperature 

value as a reference 
 Normally this value is set to be 

at 70°F 
 Shift E* test results at other 

temp. to reference temp. by 
time-temp superposition 

 E* results are not changed 
 Can calculate E* values at any 

temp. and freq. from master 
curve 
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Master Curve 
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Witczak Predictive Equation (WPE) 
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Where 
      E* =  dynamic modulus (105 psi) 
      η =  binder viscosity (106 poise),  log log η = Ai + VTSi logT 
      T =  pavement temperature (Kalvin), 
      Ai =  Intercept of Viscosity-Temperature Regression Equation 
      VTSi =  Slope of Viscosity-Temperature Regression Equation 
      Va =  Air voids (%) 
      Vbeff =  Effective Binder Content by Volume (%) 
      ρ34, ρ38, ρ4 = Cumulative Retained on 3/4“, 3/8“, and #4 Sieves, respectively (%) 
      ρ200 =  Passing on #200 Sieve (%) 



Dynamic Modulus Master Curve 
AC Surface with PG76-22 
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 MC Sigmoidal Predictive Equation 

tr   = Time of loading at reference temperature 
δ   =  Minimum value of E* 
δ+α  = Maximum value of E* 
β, γ =  Parameters describing the shape of the 
             sigmoidal function 
 

logE* )(log1 rte γβ
αδ ++

+=
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Time-Temperature Superposition: Shifting 

tr   = Time of loading at reference temperature 
t   = Time of loading 
a(T)  = Shift factor as a function of temperature 
T  = Temperature 
 

tr = 
)(Ta

t  
rt

)( tTa =  
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E* Master Curve Mathematical 
Formulation 
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And 

Where: 

E* = Dynamic Modulus (psi) 

δ, α, β, and γ = Sigmoidal Parameters 

tr = Reduced Time 

t = Time (sec) 

a(T) = shift factor dependent on temperature, T (in oF) 

SOURCE OF 
VARIATION OF 

METHODS 



Final Master Curve Equation 
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Master Curve Equations 
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Definition of Time (Period) 

 T: Called “Period” but it is actually the time 
required for the response to begin repeating itself 

 The fundamentally accepted definition (exclusive 
of rheologists) is that: 

 T = tload = 1 / f 

T 

i.e., f = 10Hz implies 10cycles/sec  

      or tload = 0.1sec 

(tload) 



Typical Calculated Frequency Values as 
Function of Speed 

Type Road 
Facility 

Design 
Speed 
(mph) 

Location Frequency (Hz) 

Representative 
AC Layer  
(4”-12”) 

Thin AC Layers 
Wearing 

Surface (1”-3”) 

Thick AC 
Layers 

Binder/Base  
(3”-12”) 

Interstate 60 Mid 15 - 40 45 - 95 12 - 25 

Bottom 5 - 20 28 - 55 5 - 15 

State 
Primary 

45 Mid 10 - 30 35 - 70 15 - 20 

Bottom 5 - 15 21 - 42 5 - 10 

Urban 
Street 

15 Mid 5 - 10 10 - 25 5 - 10 

Bottom 1 - 4 7 - 14 1.5 - 5 

Intersection 0.5 Mid 0.1 – 0.5 0.5 – 1.0 0.1 – 0.25 

Bottom 0.05 – 0.25 0.25 – 0.5 0.05 – 0.15 



Introduction to the Ai-VTSi Analysis 
 
 
 
 



Relationships Used in the Ai-VTSi Analysis 
 

 Loglog ή(cp) = Ai + VTSi* Log Tr 
 
 ή(cp) – in units of centipoise 
 Tr – Rankine Temperature (Tr=Tf+459.7) 
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ASTM Ai-VTSi Viscosity Model 
log log η = A + VTS log TR 

 

Viscosity in Witczak E* Model (Part of Level 2) 
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Relationships Used in the Ai-VTSi Analysis 

 Conversion of Pen (5 sec; 100 gm) to ή 
 

 ή  (in Poise) = 10.5012-2.2601 * log Pen + 
                   0.00389* (log Pen)^2   
        

 



Relationships Used in the Ai-VTSi Analysis 
 ή at Trb (Softening Point) = 13,000 Poise (Shell Oil) 
 
 ή (cp) = ή (cs) * (1 / Gb) 

 
 1 Pa-s = 10 Poise 





Summary of Ai-VTSi Values for Example 
(With Mix / Compaction Temperatures) 

 



Impact of Aging Upon E* Master Curves 



Change of E* Due to Field Aging Time for 2 
Differing Environmental Locations 



43 

Advantages: 
 E* allows hierarchical characterization  
 takes care of aging  
 takes care of vehicle speed  
 can be linked to PG  Binder 
 E* approximates FWD back-calculated modulus 
 provides rational mechanistic material property for 

distress prediction 
 FHWA – AASHTO test protocols available 
 Distress predictive models available 

Dynamic Modulus (E*) 
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Indirect Tension Creep Test 
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Beam Fatigue Test 
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Rotational Viscometer 
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Dynamic Shear Rheometer 
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 Actual Traffic load spectra yields higher levels of 
rutting and cracking compared to the classical 
E18KSAL’s. 
 

 Traffic repetitions is a significant parameter 
influencing pavement distress. 
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 Binder stiffness has a significant influence upon AC 
rutting. 
 

 As the binder stiffness increases, AC rutting 
decreases. 
 

 In fact, as the entire HMA mix stiffness increases, 
AC rutting decreases. 
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 Traffic Speed Influences The AC Rutting. 
 

 Creep Speed (Parking Lot, Intersection 
Analysis) Causes Much More Damage To 
The Pavement Compared To Faster Highway 
Speeds.  
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 For all variables being the same, the higher 
the temperature of an environmental location, 
the higher the AC rutting becomes. 
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 AC thickness has a significant influence 
upon Alligator fatigue cracking. As the 
AC thickness increases, the amount of 
alligator (bottom-up) fatigue cracking 
decreases. 
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 The  more channelized that the vehicular 
traffic becomes, the more severe the 
pavement rutting becomes. 
 

 The severity of the rutting is magnified for 
layers near the surface. 
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 Presence of GWT near / within unbound 
material layers can significantly alter the 
material moduli and hence increase 
pavement damage.  
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 Binder stiffness has the greatest influence 
upon Thermal Fracture within a cold 
environment. 
 

 As the binder stiffness (or surface layer 
stiffness) increases, the AC Thermal Fracture 
increases. 
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 Thermal Cracking cumulatively increases over time. 
 Combined property of binder content and air void has 

an influence upon the Thermal Fracture. 
 In general, AC Thermal Fracture decreases with an 

increase of binder content and a decrease in air void. 
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Influence  of AC Mix Stiffness on Alligator 
Cracking, (HAC = 1 in) 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Low E* Med E* Hi E*

AC Mix Stiffness

Al
lig

at
or

 B
ot

to
m

 U
p 

%
 C

ra
ck

in
g 

Re
fe

re
nc

e 
Ba

se
d 

Up
on

 6
00

0 
ft

2 / 5
00

 ft

SG Mr= 3 ksi SG Mr= 8 ksi SG Mr= 15 ksi SG Mr= 30 ksi  



ARIZONA STATE  UNIVERSITY 70 

Influence  of AC Mix Stiffness on Alligator 
Cracking, (HAC = 10 in)  
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Influence of AC Thickness upon 
Alligator Cracking 
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Influence of Subgrade Modulus upon 
Alligator Cracking  
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Influence of AC Mix Air Voids upon 
Alligator Cracking  
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Influence  of Percent AC Binder by 
volume upon Alligator Cracking  
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AC Rut Depth Prediction (M-E PDG) 

Basic Model: 
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Unbound Base / Subbase / Subgrade 
Rut Depth Prediction (M-E PDG) 

Basic Model: 
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Unbound Base / Subbase / Subgrade Rut 
Depth Prediction (M-E PDG) 

(Cont’d) 

β = f (wc) 
EICM / 1-37A Moduli – Moisture  
Interaction Critical here 
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Influence of MAAT upon Permanent 
Deformation  
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Effect of Traffic Speed upon 
Permanent Deformation  
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Influence of AC Thickness upon AC 
Rutting as Function of Depth Within AC 

Layer 
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Effect of AC Thickness on Subgrade 
Rutting at Different Subgrade Modulus 

(Medium AC Mix Stiffness) 
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General εp/εr Relationship Used 
in the 2002 Design Guide 

εp = plastic strain 

εr = resilient strain 

T = layer temperature (deg F) 

N = no of load repetition 

k1 = Confining Pressure, Depth Function. 

βr1, βr2, βr3 = Calibration Factors 

HMA Layer 

βr1 
βr2 βr3 



Field Calibration Factors 
AC-Fatigue 
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Nf = number of repetitions to fatigue cracking 

εt = tensile strain at the critical location 

E = material stiffness 

K1 = laboratory calibration parameter 

βf1, βf2, βf3  = calibration factors 



 M-E PDG is the most powerful Pavement-Material 
Analysis-Design Tool ever developed. 

 M-E PDG will lead to a more fundamental analysis of 
the consequences associated with the material-
structure - environmental interaction. 

 M-E PDG has the potential for increasing pavement 
performance and life while decreasing life cycle costs 
associated with new and rehab scenarios. 

85 
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Implementation Considerations 

 Be careful of blind application of Modified asphalts 
in MEPDG.  
 

 E* value may be okay 
 Distress performance prediction models (ac 

rutting, fatigue cracking and thermal fracture) 
generally calibrated with conventional asphalt 
mixtures 

 Performance prediction of Modified AC Mixtures 
questionable 

 Suggest local calibration 
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Implementation Considerations 

 MEPDG is an excellent product and major enhancement to 
current technology; however the technology is still evolving: 
 Do not expect perfect predictions 

 Need to locally calibrate to actual field performance 
 Must be prepared to Conduct Trench Sections!!!!!! 

 Need to have a well defined nationally coordinated 
approach to develop planned model enhancements 
 Reflective cracking 
 Rutting and fatigue cracking model enhancements 
 Chemically Stabilized Materials Calibration 
 Performance of modified mixtures 
 Refinement of level standard deviations for use in 

reliability models 
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